This paper compares the dynamic responses and performance of two spar-type wind turbines, DeepSpar and ShortSpar, in deep and intermediate water depths, respectively. The oil and gas industry has implemented spar platforms in deep water areas. Spar platforms show good hydrodynamic performance due to their deep draft. The same idea is applied to offshore wind turbines to present a reliable concept. Hywind is an example of a successful offshore wind turbine based on the spar concept in deep water. The good performance of spar-type wind turbines motivates us to study the feasibility of using these turbines in moderate water depth. Spar-type 5-MW wind turbines in deep and moderate water depths are compared. The power performance, dynamic motions, tension responses, accelerations, structural shear forces and bending moments are studied. Simo/Riflex/TDHMILL3D is used to perform the coupled wave- and wind-induced analyses. Simo/Riflex, developed by MARINTEK, is a commercial tool for analyzing the coupled wave-induced responses of moored offshore structures. TDHMILL3D, is an external DLL that accounts for spar motions while calculating the aerodynamic thrust at each time step using the turbine characteristics and relative velocities. Different environmental conditions are used to compare the responses. The results show that spar-type wind turbine in the moderate water depth exhibits good performance and that its responses are reasonable compared to those of spar-type wind turbine in deep water. This finding indicates the feasibility of implementing the same rotor-nacelle assembly for both concepts. The total mass (the structural mass plus the ballast) of the ShortSpar is 35% less than that of the DeepSpar, while the statistical characteristics of the power generated are almost the same. The reduced mass of the ShortSpar helps to achieve a more cost-effective solution for floating wind turbines in moderate water depth.
Skip Nav Destination
ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering
July 1–6, 2012
Rio de Janeiro, Brazil
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-4491-5
PROCEEDINGS PAPER
Comparative Study of Spar-Type Wind Turbines in Deep and Moderate Water Depths Available to Purchase
Madjid Karimirad,
Madjid Karimirad
Norwegian University of Science and Technology, Trondheim, Norway
Search for other works by this author on:
Torgeir Moan
Torgeir Moan
Norwegian University of Science and Technology, Trondheim, Norway
Search for other works by this author on:
Madjid Karimirad
Norwegian University of Science and Technology, Trondheim, Norway
Torgeir Moan
Norwegian University of Science and Technology, Trondheim, Norway
Paper No:
OMAE2012-83559, pp. 551-560; 10 pages
Published Online:
August 23, 2013
Citation
Karimirad, M, & Moan, T. "Comparative Study of Spar-Type Wind Turbines in Deep and Moderate Water Depths." Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Volume 4: Offshore Geotechnics; Ronald W. Yeung Honoring Symposium on Offshore and Ship Hydrodynamics. Rio de Janeiro, Brazil. July 1–6, 2012. pp. 551-560. ASME. https://doi.org/10.1115/OMAE2012-83559
Download citation file:
34
Views
Related Proceedings Papers
Related Articles
Aero-Elastic-Control-Floater-Mooring Coupled Dynamic Analysis of Floating Offshore Wind Turbine in Maximum Operation and Survival Conditions
J. Offshore Mech. Arct. Eng (May,2014)
Research on the Influence of Helical Strakes and Its Parameters on Dynamic Response of Platform of Floating Wind Turbine Based on Optimization Method of Orthogonal Design
J. Sol. Energy Eng (October,2017)
Model Test of a 1:8-Scale Floating Wind Turbine Offshore in the Gulf of Maine
J. Offshore Mech. Arct. Eng (August,2015)
Related Chapters
ISO 19901-1 Petroleum and Natural Gas Industries — Specific Requirements for Offshore Structures — Part 1: Metocean Design and Operating Considerations
Ageing and Life Extension of Offshore Facilities
Estimating Stress Intensity Factor for Semi Elliptical Circumferential Cracks in Offshore Wind Turbine Monopiles Using Weight Functions
Ageing and Life Extension of Offshore Facilities
Wind Energy in the U.S.
Wind Energy Applications