Model tests are usually used for the traditional seakeeping predictions (transfer functions of ship motions and loads in regular waves). Experience shows that numerical solution of Reynolds-averaged Navier-Stokes equations (RANSE) can provide accurate results for this task, however, such computations require too much computational time for the required large number of the loading conditions, ship speeds and wave directions and periods. Traditionally, potential flow methods are used for such computations at early design stages. Although potential flow methods can produce results very quickly for large number of conditions, viscosity effects (most important for the roll motion) have to be taken into account using measurements or RANSE computations.

Rankine source method, applied to seakeeping problems perhaps for the first time by Yeung [1] to oscillating ship sections, is increasingly used in practical seakeeping analysis. This paper presents a three-dimensional Rankine source code GL Rankine. Patch method is used instead of the usual collocation method to satisfy boundary conditions on the solid body surface. Periodic flow due to waves is linearized with respect to wave and motion amplitude, taking into account interactions between the nonlinear steady flow and periodic flow due to waves and ship motions. The steady flow solution accounts for the nonlinear free-surface conditions, ship wave and dynamic squat. The paper shows results of the method for ship motions in waves in comparison with model measurements and RANSE simulations.

This content is only available via PDF.
You do not currently have access to this content.