Vortex-induced vibrations of two side-by-side cylinders of different diameters in steady incompressible flow are studied. The diameter ratio of cylinders is fixed at 0.1. The Reynolds number is fixed at 5000 based on the large cylinder diameter and free stream velocity. A Petrov-Galerkin finite element method is used to solve the two dimensional Reynolds-averaged Navier Stokes equations using the Arbitrary Lagrangian Eulerian scheme with a SST k-ω turbulence model closure. The numerical method has been validated against available experimental results. Then, the effects of natural frequencies of the cylinders on the vibration amplitude and vortex shedding regimes are investigated. It is found that for the range of considered parameters, collision of the cylinders is dependent on the difference of the natural frequencies of the cylinders.

This content is only available via PDF.
You do not currently have access to this content.