The foundation of offshore wind turbines usually involves the installation of large-diameter steel piles in the seabed, either in monopile or multi-pile configurations (jacket, tripod, etc…), which have to ensure a proper fixity of the turbine during its whole service life-time.

However, such foundations raise several challenges and novel questions, partly due to the special characteristics of the offshore environment (for instance, the large numbers of load cycles from wind and waves and the possible influence of transient changes of pore water pressure around the pile) and aggravated by their large diameter, reduced slenderness and elevated ratio of lateral to vertical loads (see Fig. 1).

This paper studies the effects of cyclic lateral loading on the offshore piles focusing on the possibility of a progressive accumulation of residual pore water pressure within the saturated embedding soil. As it will be shown, this can lead to significant changes of their behaviour under external loading, which can potentially compromise the foundation’s stability or serviceability.

The paper will also analyse some singular effects of an irregular loading (e.g. cyclic loading with variable amplitude), in particular the so-called “order effects” and the phenomena arising during a realistic storm of moderate magnitude, and discuss their potential for transient damages to the foundation’s stiffness.

All these phenomena, which can lead to a loss of serviceability of the structure, have been investigated by the authors by means of a coupled bi-phasic analytical model of the offshore foundation featuring a versatile constitutive law suitable for the soil. The constitutive model, in the frame of the theory of Generalized Plasticity, can reproduce some complex features of cyclic soil behaviour such as the tendency for a progressive densification under cyclic loading, which is responsible for the soil liquefaction phenomena in undrained conditions.

Finally, some implications of these issues for the practical design of offshore monopiles will be discussed and some specific recommendations for the design procedures will be outlined.

This content is only available via PDF.
You do not currently have access to this content.