With new discoveries in the Brazilian Pre-Salt area, the oil industry is facing huge challenges for exploration in ultra-deep waters. The riser system, to be used for the oil transportation from seabed to the production unit, is one of them. The definition of riser configurations for ultra-deep waters is a real challenge. Problems have being identified for flexible risers, hybrid risers and steel catenary risers (SCR) configurations to comply with rules requirements and criteria in water depths of 2000m.
The objective of this work is to present a study on the fatigue behavior of a Steel Catenary Riser in 1800m of water depth. One of the main challenges for SCRs in ultra-deep waters is the fatigue, due to platform 1st order motions, at the touch down zone (TDZ).
A case study is presented for a Steel Catenary Riser connected to a semi-submersible platform. The influence of some design and analysis parameters is studied in order to evaluate their impact on the SCR fatigue life. The main parameters to be evaluated in this work are: The mesh refinement, in the global analysis, at the Touch Down Zone; The internal fluid density variation along the riser, and; The 1st order platform motions applied to the top of riser; In addition to the results of this paper, some highlights are presented for SCR analysis in similar conditions.