Numerical simulations are presented, on the dynamic response of a one-tenth scaled tanker double hull structure struck laterally by a knife edge indenter. The small stiffeners of the full-scale prototype are smeared in the small-scale model by increasing the thicknesses of the corresponding plates. The dynamic response is evaluated at an impact velocity of 7.22 m/s and the impact point is chosen between two frames to assure damage to the outer shell plating and stringers. The simulations are performed by LS-DYNA finite element solver. They aim at evaluating the influence of strain hardening and strain rate hardening on the global impact response of the structure, following different models proposed in the literature. Moreover, the numerical model is scaled to its full-scale prototype, summarizing the governing scaling laws for collision analysis and evaluating the effect of the material strain rate on the plastic response of large scaled numerical models.

This content is only available via PDF.
You do not currently have access to this content.