This report firstly presents the rule based scantlings and sectional properties of the example ship defined by using the nominal properties of mild shipbuilding steel. It also describes the way of collection of characteristic material specimens of rolled steel plates and bars delivered by the steel manufacturer to the shipyard for to the example ship.

Secondly it summarizes the results of tensile testing in the Laboratory for experimental mechanics of the Faculty of Mechanical Engineering and Naval Architecture in Zagreb of plates and bars denoted here as ‘in-built’ material properties for the example ship according to the production plans.

The report then reminds on the rule based material properties for acceptance purposes. Next it considers the influence of ‘in-built’ mechanical properties with respect to the rule requirements on local, global and ultimate strength of ships. The report discusses material properties other than yield strength, which participate in the assessment of the overall ship safety such as the weld strength, buckling and fatigue strength, low temperature behavior, corrosion and reliability.

The results of the tensile testing of ‘in-built’ materials are then applied to checking of the local, global and ultimate ‘as-built’ strength of the example ship’s hull instead of the ‘as-designed’ strength defined by the nominal material properties.

The report at the end discusses the differences between the ‘as-designed’ and the ‘as-built’ hull strength, fatigue life and reliability. It suggests minimization of the hull strength uncertainties by adopting the mechanical properties of ‘inbuilt’ materials. The conclusion supports the stirring idea of this report that in addition to the ‘as-designed’ strength, a ship deserves individualized assessment of the “as-built” ship hull strength based on the measured realistic ‘in-built’ properties.

This content is only available via PDF.
You do not currently have access to this content.