Jack-ups, as the name indicates, are self-elevating units consisting of a floatable hull and, usually, three truss work or circular legs. As a mobile structure, jack-ups are mainly utilized for oil and gas exploration and maintenance purposes in shallow to medium water (up to 120 meters), though they have recently seen application in the construction of offshore wind energy infrastructure.

The use of the finite element method for structural analyses of jack-ups is a common practice. However, most jack-up models remain elastic with the yielding of structural members or even the soil around the spudcan not accounted for. This paper describes the development of a comprehensive and integrated elasto-plastic jack-up model in ABAQUS [1]. This model is representative of a modern jack-up structure, and it can capture geometrical nonlinearities and plastic behaviour of the structural and soil materials.

In this study, the discretisation of the structural elements, the choice of elements, the elasto-plastic behaviour of the material, and the mesh generation are described. Numerical results of a series of static pushover analyses for this sophisticated model under extreme loads are presented. The sensitivity of the results to the structural configurations is discussed. For instance, the choice of sectional properties of the chord member and the assumption of the behaviour of the spudcan (jack-up foundation)-soil interaction are shown to be critical to the prediction of the ultimate strength of the platform and the progressive failure mechanism.

In conclusion, generic issues associated with static pushover analyses of jack-ups are discussed and possible numerical solutions are proposed.

This content is only available via PDF.
You do not currently have access to this content.