A need has been identified to improve the knowledge about extreme slamming loads from breaking waves on vertical columns, such as offshore platforms and wind turbine foundations. Due to strongly nonlinear physical mechanisms and large statistical variability, more and improved experimental data are needed, as well as better qualified design procedures. In this paper, model test data and CFD simulations from a recent study with a fixed vertical column are compared and investigated in more detail. Selected individual extreme slamming events due to energetic breaking waves in 1:40 and 1:125 scaled model tests are presented and considered. Waves correspond approximately to extreme breaking wave occurrences in steep energetic sea states with 10-4 annual probability in the Norwegian sector.

Slamming pressures on the column wall are measured in time and space by means of a 7 × 7 pressure sensor array covering 19m2 (full scale). Significant spatial variations are observed. When spatially averaged over the array, the observed highest pressures are typically in the range 1MPa–3MPa (full scale), while smaller measuring areas give higher values. This compares roughly to levels found from recent results in the literature; although exact comparison is difficult due to statistical uncertainty issues. Experiences obtained from parallel CFD and PIV activities are also compared to the experiments, from which free-surface particle velocities up to 25m/s (full scale) are estimated in the worst cases. Finally, a simple empirical formula for a slamming coefficient depending on the actual pressure integration area is suggested based on the results.

This content is only available via PDF.
You do not currently have access to this content.