The vortex induced vibration (VIV) on a circular cylinder with low mass-damping parameter and low Reynolds number is investigated numerically as basis for applications on dynamics of risers used in the offshore oil and gas industry and as a first step before tackling the harder high Reynolds number problem. The cylinder is supported by a spring and a damper and free to vibrate in the transverse direction. The numerical solution of the Reynolds average Navier-Stokes equations written in curvilinear coordinates is obtained using an upwind and Total Variation Diminishing conservative scheme and the k-ε turbulence model is used to simulate the turbulent flow in the wake of the body. Results were obtained for the phase angle, response amplitude, frequency, and lift coefficient for a variation of reduced velocity from 2 to 12 and three different proportional variations of Reynolds number, 2000–6000, 2000–12000, and 2000–24000. The numerical results indicate the strong effect of the Reynolds number range on the response amplitude, lift coefficient, and frequency of oscillation for a low mass-damping parameter.

This content is only available via PDF.
You do not currently have access to this content.