Rigid subsea jumper systems are typically used as interface between subsea structures and are required to accommodate significant static and dynamic loads. Due to constraints imposed by in-line planar jumpers (e.g. U shaped and M shaped jumpers), the industry is shifting towards the use of multi-planar jumper systems (e.g., Z-shaped jumpers). These multi-planar jumper systems have increased tolerance to end displacements and can be tailored to accommodate cyclic end motions of subsea structures. Multi-planar systems, however, come with unique challenges of their own including the coupling of flexural and torsional responses under vortex induced vibrations (VIV), fluid induced vibration (FIV) and slugging. In particular, the development of hydrodynamic slug flow is a common occurrence in oil and gas pipelines. It is understood to be initiated by instabilities of wave on the gas-liquid interface. It is also understood that slug flows are the source of vibration within pipework when a change of direction occurs e.g. 90° bend at a subsea riser base or top side piping. In standard slug flow vibration analysis, averaged slug frequency and length are used to calculate the force generated. In the case of a multi-planar rigid jumper, several changes of direction occur within a short length of pipe. After each bend the characteristics of the slug flow are modified. It is necessary to accurately capture these changes in order to reproduce the forces generated at critical points along the jumper length. This paper presents a methodology for analyzing slugging induced fatigue that has been developed in an on-going study undertaken by MCS Kenny for design of multi-planar rigid jumper systems. In this methodology, Computational Fluid Dynamics (CFD) is used to accurately simulate the flow within the jumper and provide pressure fluctuations on the internal pipe wall for the vibration analysis. The pressure fluctuations are then incorporated in a Finite Element (FE) model of the jumper system and further used to determine the slugging fatigue damage. CFD (Star-ccm+) and FE (Flexcom, ABAQUS) software programs are used to accurately capture the response of the jumper system. Key conclusions and challenges overcome during the course of this study are presented herein.
Skip Nav Destination
ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
June 19–24, 2011
Rotterdam, The Netherlands
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-4439-7
PROCEEDINGS PAPER
Flow Induced Forces on Multi-Planar Rigid Jumper Systems
Christian Chauvet,
Christian Chauvet
MSi Kenny, Inc., Aberdeen, Scotland
Search for other works by this author on:
Paul Jukes
Paul Jukes
MCS Kenny, Inc., Houston, TX
Search for other works by this author on:
Aravind Nair
MCS Kenny, Inc., Houston, TX
Christian Chauvet
MSi Kenny, Inc., Aberdeen, Scotland
Alan Whooley
MCS Kenny, Inc., Houston, TX
Ayman Eltaher
MCS Kenny, Inc., Houston, TX
Paul Jukes
MCS Kenny, Inc., Houston, TX
Paper No:
OMAE2011-50225, pp. 687-692; 6 pages
Published Online:
October 31, 2011
Citation
Nair, A, Chauvet, C, Whooley, A, Eltaher, A, & Jukes, P. "Flow Induced Forces on Multi-Planar Rigid Jumper Systems." Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. Volume 7: CFD and VIV; Offshore Geotechnics. Rotterdam, The Netherlands. June 19–24, 2011. pp. 687-692. ASME. https://doi.org/10.1115/OMAE2011-50225
Download citation file:
24
Views
0
Citations
Related Proceedings Papers
Related Articles
Fluids Transport Optimization Using Seabed Separation
J. Energy Resour. Technol (September,2000)
Characteristic Analysis of VIV-Induced Fatigue Damage of Top Tensioned Risers Based on Simplified Model
J. Offshore Mech. Arct. Eng (May,2011)
Profiles of Two JOMAE Associate Editors (A Continuing Series)
J. Offshore Mech. Arct. Eng (October,2021)
Related Chapters
Pulsation and Vibration Analysis of Compression and Pumping Systems
Pipeline Pumping and Compression System: A Practical Approach, Third Edition
Pulsation and Vibration Analysis of Compression and Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach, Second Edition
Siphon Seals and Water Legs
Hydraulics, Pipe Flow, Industrial HVAC & Utility Systems: Mister Mech Mentor, Vol. 1