Slender structures immersed in a cross flow can experience vibrations induced by vortex shedding (VIV), which cause fatigue damage and other problems. Engineering VIV models tend to operate in the frequency domain. A time domain model would allow to capture effects beyond the scope of today’s frequency domain empirical codes: interaction between in-line and cross-flow vibrations, higher order frequency components, structural non-linearities, simultaneous actions from other loads like waves and forced motions at boundaries. There is also the potential to capture the chaotic nature of VIV. Such a model was formulated in the present work: for each cross section and at each time step, the recent velocity history is described as a combination of Laguerre polynomials. The coefficients of that combination are used to enter an interpolation function to predict the instantaneous force, allowing to step the dynamic analysis. An offshore riser was modeled in this way: Some analyses provided an unusually fine level of realism, while in other analyses, the riser fell into an unphysical pattern of vibration. It is concluded that the concept is very promising, yet that more work is needed to understand trajectory stability and related issues, in order to further progress towards an engineering tool.

This content is only available via PDF.
You do not currently have access to this content.