Multiphase flows are present in many different industrial and research applications. The accurate tracking of interfaces is therefore an important part of numerical simulation of many physical phenomena. One of the challenges in modeling multiphase flows is to capture a moving interface with a large deformation, especially the breaking and merging of the interface. In the recent past, level set method and Smoothed Particle Hydrodynamics (SPH) have emerged as efficient and robust methods to handle multiphase flows with large topological changes and high density ratios. The capability, efficiency and accuracy of these techniques are compared for a range of benchmark problems, such as gas bubble rising in a viscous liquid and collapse of a column of water. The results are compared with available numerical and experimental data.

This content is only available via PDF.
You do not currently have access to this content.