The ability of submerged lens-shaped structures to focus linear surface waves in deep water is explored through a series of experimental tests in a wave making basin. Three lenses were designed using a combination of linear strip theory and a surface wave analogy to geometrical optics. Two of these lenses were designed to focus waves of a single wavelength of 0.482 m (18.97 in.), one with a focal length to lens width ratio (f-number) of 2.0 and the other with an f-number of 0.5. The third lens was designed to function as a compound lens that could focus a range of wavelengths of between 0.39 m (15.37 in.) and 0.694 m (27.32 in.) at an f-number of 2.0. Using resistance wave height gauges, the sensitivity of wave height at the focus to variations in wavelength from between 0.39 m (15.37 in.) to 0.61 m (24.01 in.) was experimentally measured for all three lenses; the sensitivity of wave height at the focus to variations of lens depths of submergence spanning the range of between 0.75 to 1.25 times the design submergence depth was also explored for the two simple lenses. It was found that the linear strip theory and geometrical optics approach predicted the wave amplification to within ten percent at the design wavelengths and depths, but that the longitudinal position of the experimentally observed focal lengths differed substantially from that expected, by as much as a factor of 2.2 for an f-number of 0.5. Additionally, while the theory predicted a single focal point for each lens, multiple focal points were found to exist behind the compound lens.

This content is only available via PDF.
You do not currently have access to this content.