Renewable energy provides a solution for complex current and future social and environmental problems whereas offshore industry has a large potential for providing renewable energy for future. Currently, offshore technology making use of wind for energy generation purpose becomes a hot spot with highly advanced research and development going on on one side and complex and critical problems present and difficult to solve on the other. This paper is trying to study problems related to the quantification of the hydrodynamic and aerodynamic loads for the design of offshore wind turbine support structures in the offshore wind farm. Both the hydrodynamic and aerodynamic conditions in the offshore site are extremely complex resulting in the difficulty of reasonable determination for the external loads on the wind turbine support structures. However, due to the increasing global demands for future energy solution, the design, analysis and optimization of offshore wind turbine is nevertheless an important issue. The paper first gives an introduction of the offshore wind farm and the complexity of the offshore environment. Wave load is explored with introduction of existing wave load models, comparison of their characteristics while the focus is placed on the nonlinear wave load by means of the Stokes higher order wave theory. Properties of a single regular wave based on methods of linear wave theory and Stokes higher order wave theory are compared which lead to differences in the results of wave load models when these two different methods are used. Wind load model is introduced briefly, followed by the introduction of current methods for determination or approximation of combined wave and wind load and also recommendations for practice. Park effect of the wind load and wave load is also introduced at limited depth in the latter stage as a direction for future research. Conclusion and recommendations based on all the above are therefore given at the last section of the paper.

This content is only available via PDF.
You do not currently have access to this content.