It is known that, for given pipe material and diameter, collapse capacity of a plain pipe subjected to external pressure is proportional to the second or third power of wall thickness. In lieu of sophisticated numerical models and experimental data, conservative approaches such as those in which thickness losses at corrosion defects are extended to the entire circumference have been adopted in practices to assess the collapse resistance of corroded pipes. This reduced wall thickness is then used in the design equation of plain pipe to predict remaining collapse capacity. Such conservative assumptions result in substantial reduction of collapse capacity for pipelines with localized corrosion defects. During the course of a multiple-year PRCI research project, results of full-scale collapse tests and three-dimensional finite element analysis demonstrated that the reduction of collapse capacity was less than 10% for defects with a depth of 50% wall thickness, an axial length of one diameter and a circumferential width of half a diameter. These findings illustrated that the actual collapse capacity of corroded pipes is significantly higher than that estimated according to the conservative assumptions. This paper presents the development of a reliability-based, practical assessment method that allows remaining collapse capacity of corroded pipelines be determined based on defect size data obtained from in-line inspections. Work involved included characterization of corrosion defects, full-scale collapse tests, validation of finite element models using experimental data, analysis of parametric cases using finite element models, development of empirical equation based on experimental and numerical results, and calibration of partial safety factors which addressed the uncertainties associated with model error, load variation, and sizing inaccuracy of corrosion defects. Practical implications of the proposed assessment method were evaluated based on selected examples.
Skip Nav Destination
ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
June 19–24, 2011
Rotterdam, The Netherlands
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-4436-6
PROCEEDINGS PAPER
Remaining Collapse Capacity of Corroded Pipelines Available to Purchase
Qishi Chen,
Qishi Chen
C-FER Technologies, Edmonton, AB, Canada
Search for other works by this author on:
Joe Zhou
Joe Zhou
TransCanada Pipelines, Calgary, AB, Canada
Search for other works by this author on:
Qishi Chen
C-FER Technologies, Edmonton, AB, Canada
Mark Marley
DNV Energy, Oslo, Norway
Joe Zhou
TransCanada Pipelines, Calgary, AB, Canada
Paper No:
OMAE2011-49054, pp. 45-54; 10 pages
Published Online:
October 31, 2011
Citation
Chen, Q, Marley, M, & Zhou, J. "Remaining Collapse Capacity of Corroded Pipelines." Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. Volume 4: Pipeline and Riser Technology. Rotterdam, The Netherlands. June 19–24, 2011. pp. 45-54. ASME. https://doi.org/10.1115/OMAE2011-49054
Download citation file:
19
Views
Related Proceedings Papers
Related Articles
Reliability Analysis of Pipelines With Local Corrosion Defects Under External Pressure
J. Offshore Mech. Arct. Eng (October,2019)
Collapse Experiments and Reliability Analyses of Corroded Pipes for Offshore Applications
J. Offshore Mech. Arct. Eng (April,2020)
Experimental Investigation of a Large-Scale Composite Riser Tube Under External Pressure
J. Pressure Vessel Technol (October,2009)
Related Chapters
Openings
Guidebook for the Design of ASME Section VIII Pressure Vessels
Openings
Guidebook for the Design of ASME Section VIII Pressure Vessels, Third Edition
Introduction
Computer Vision for Structural Dynamics and Health Monitoring