In this paper, nonlinear instability and evolution of deep-water rogue waves on following and opposing currents were described by numerical simulation for laboratory investigation. The generation of rogue waves in a numerical tank by means of wave focusing technique had been studied. Here a spatial domain model of current modified nonlinear Schro¨dinger (NLSC) equations in one horizontal dimension (1D) was established for describing the deep-water wave trains in a prescribed stationary current field. The transient water waves (TWW) was adopted as the initial condition of the NLSC equation. The steady current was added to see the effect of wave-current interaction on the energy concentration of gravity waves. The influence of current as well as other terms in the NLSC equations on wave height, inclination, particle velocity and acceleration are shown. Meanwhile, the focusing time/position of TWW influenced by the current field is investigated, which is of course a very important factor in experimental research when we generate rogue waves in the laboratory.

This content is only available via PDF.
You do not currently have access to this content.