Air gap statistics for offshore platforms is directly related to the extreme value statistics of the random ocean wave field. The present paper describes a new method for predicting the extreme values of a random wave field in both space and time. The method relies on the use of data provided by measurements or Monte Carlo simulation combined with a technique for estimating the extreme value distribution of a recorded time series. The time series in question represents the spatial extremes of the random field at each point in time. The time series is constructed by sampling the available realization of the random field over a suitable grid defining the domain in question and extracting the extreme value. This is done for each time point of a suitable time grid. Thus, a time series of spatial extremes is produced. This time series provides the basis for estimating the extreme value distribution using recently developed techniques for time series, which results in an accurate practical procedure for solving a very difficult problem. This procedure is applied to the prediction of air gap statistics for a jacket structure.

This content is only available via PDF.
You do not currently have access to this content.