Three types of imperfections are analysed in the current paper, and they are: (i) Initial geometric imperfections, i.e., deviations from perfect geometry, (ii) Variations in the wall thickness distribution, and (iii) Imperfect boundary conditions. It is assumed that cones are subject to: (a) axial compression only, (b) radial pressure only, and (c) combined loading, i.e., axial compression and external pressure acting simultaneously. Buckling strength of imperfect cones is obtained for all of the cases above. It is shown that the buckling strength is differently affected by imperfections, when cones are subjected to axial compression or to radial external pressure. The response to imperfections along the combined stability envelope is also provided, and these results are first of this type. The finite element analysis, using the proprietary code is used as the numerical tool. Cones are assumed to be from mild steel and the material is modelled as elastic perfectly plastic. Geometrical imperfection profiles are affine to eigenshapes. A number of them are tried in calculations, as well as the effect of them being superimposed. The results indicate that imperfection amplitude and its shape strongly affect the load carrying capacity of conical shells. Also, it is shown that the buckling loads of analyzed cones are more sensitive when subjected to combined loading as compared to their sensitivity under single load conditions. At the next stage, uneven thickness distribution along the cone slant was considered. Variation of wall thickness was assumed to vary in a piece-wise constant fashion. This appears to have a large effect on the buckling strength of cones under axial compression only as compared with that of cones subjected to radial external pressure only. Finally, the effect of variability of boundary conditions on failure load of cones was investigated for two loading conditions, i.e., for axial compression and for radial pressure, only. Results indicate that change of boundary conditions influences the magnitude of buckling load. For axially compressed cones the loss of buckling strength can be large (about 64% for the worst case (beta = 30 deg, the cone not restrained at small radius end). Calculations for radial pressure indicate that the loss of buckling strength is not as acute — with 34% for the worst case (beta = 40 deg, relaxed boundary conditions at the larger radius end). This is an entirely numerical study but references to accompanying experimental programme are provided.
Skip Nav Destination
ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
June 19–24, 2011
Rotterdam, The Netherlands
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-4434-2
PROCEEDINGS PAPER
The Effect of Shape, Thickness and Boundary Imperfections on Plastic Buckling of Cones
O. Ifayefunmi,
O. Ifayefunmi
The University of Liverpool, Liverpool, UK
Search for other works by this author on:
J. Błachut
J. Błachut
The University of Liverpool, Liverpool, UK
Search for other works by this author on:
O. Ifayefunmi
The University of Liverpool, Liverpool, UK
J. Błachut
The University of Liverpool, Liverpool, UK
Paper No:
OMAE2011-49055, pp. 23-33; 11 pages
Published Online:
October 31, 2011
Citation
Ifayefunmi, O, & Błachut, J. "The Effect of Shape, Thickness and Boundary Imperfections on Plastic Buckling of Cones." Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. Volume 2: Structures, Safety and Reliability. Rotterdam, The Netherlands. June 19–24, 2011. pp. 23-33. ASME. https://doi.org/10.1115/OMAE2011-49055
Download citation file:
26
Views
Related Proceedings Papers
Related Articles
Buckling of Unstiffened Steel Cones Subjected to Axial Compression and External Pressure
J. Offshore Mech. Arct. Eng (August,2012)
Buckling of Barreled Shells Subjected to External Hydrostatic Pressure
J. Pressure Vessel Technol (May,2001)
Experimental Perspective on the Buckling of Pressure Vessel Components
Appl. Mech. Rev (January,2014)
Related Chapters
Openings
Guidebook for the Design of ASME Section VIII Pressure Vessels
Openings
Guidebook for the Design of ASME Section VIII Pressure Vessels, Third Edition
Section VIII: Division 2–Alternative Rules
Companion Guide to the ASME Boiler & Pressure Vessel Codes, Volume 2, Sixth Edition