The slamming of breaking waves on the legs of large volume offshore platforms has received increased attention over recent years. To investigate this problem, MARINTEK’s Wave Impact Loads JIP has, in one of its sub-tasks, focused towards an idealised model test setup of a rectangular cylinder in breaking waves. The model consists of a vertical column with a fragment of a horizontal deck attached. The model is fixed at a distance L ahead of the wave maker. Physical scale model test experiments of the block in regular waves and in wave groups have been carried out in Phase 1 of the JIP (2008). The objective of this study is the CFD simulation of a long crested breaking wave and its impact on the aforementioned cylinder and deck structure in order to find out the feasibility of the numerical reconstruction of such events. The commercial CFD tool Star-CCM+ V5.03.0056 (www.cd-adapco.com) is used in this study. This paper considers results from the test setup, and compares the measured wave elevation against results from the CFD code. The position of the cylinder in relation to the breaking wave front is investigated in the numerical simulation in order to analyze its effect on the slamming force. Use of an unsteady wave boundary condition, matching the exact motion history of the wave-maker with the measured free surface elevation at the wave maker gives an almost exact matching between the computed wave profile and the measured wave profile. The improvement in the numerical tool of Star-CCM+ which makes it possible to use higher order time integration scheme for VOF significantly decreases the numerical diffusion of the wave propagation. This new scheme also enables the use of a time step 10 times larger than the first order scheme which reduces the computational time. Because a large time step can be chosen it is important that the time step is small enough to capture the correct time evolution of the physical phenomena of interest. Capturing the pressure evolution at a slamming event demands very high spatial resolution. Spatially averaged slamming pressures look fairly similar to the model test observations, while further work is needed for a more detailed comparison.

This content is only available via PDF.
You do not currently have access to this content.