In the present paper, Structural health monitoring has become an evolving area of research in last few decades with increasing need of online monitoring the health of large structures. The damage detection by visual inspection of the structure can prove impractical, expensive and ineffective in case of large structures like offshore platforms, multistoried buildings and bridges. Structural health monitoring is defined as the process of detecting damage in a structural system. Damage in the system causes a change in dynamic properties of a system. The structural damage is typically a local phenomenon, which tends to be captured by higher frequency signals. Most of vibration-based damage detection methods require the modal properties that are obtained from measured signals through the system identification techniques. However, the modal properties such as natural frequencies and mode shapes are not such a good sensitive indication of structural damage. Structural damage detection and damage localization of jacket platforms, based on wavelet packet transforms is presented in this paper. Dynamic signals measured from the structure by the finite element software package ANSYS are first decomposed into wavelet packet components. Component energies are then calculated and used for damage assessment. The results show that the WPT-based component energies are good candidate indices that are sensitive to structural damage. These component energies can be used for damage assessment including identifying damage occurrence and location.

This content is only available via PDF.
You do not currently have access to this content.