Dry-tree solutions with top-tensioned risers (TTRs) have been successfully used with floating production systems (FPS), such as Spars and TLPs, in a wide range of deepwater applications. Both single-casing and dual-casing top-tensioned risers are field-proven in existing field developments. The top-tensioned risers can bring technical advantages and operational cost benefits. Moreover, recent oil and gas developments that have high pressure and high temperature (HPHT) in combination with severe environmental loads lead to more design challenges for steel risers in deepwater, pushing the design limits of conventional steel pipes in deepwater risers. High-strength steel pipes are therefore considered for both technical and economic reasons. The objective of the study that forms the basis for this paper is to provide top-tensioned riser system configurations that meet challenges of the extremely high operational pressure and environmental loads in deep and ultra-deep waters. Part I of the paper was published in OMAE 2010 [1], addressing strategies for top-tensioned riser sizing and weight management for HPHT applications in deep and ultra-deep waters, and also design considerations for TTR specialty joints. Part II here present spar top-tensioned risers and their support tensioning systems. The paper illustrates the HPHT riser global configuration on spar and the tensioning system performance optimization, as well as coupled motion compensation with the spar platform. The impact of riser loads on spar global performance is also discussed.
Skip Nav Destination
ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering
June 19–24, 2011
Rotterdam, The Netherlands
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-4433-5
PROCEEDINGS PAPER
Design Optimization of Top-Tensioned Risers for Deepwater HPHT Applications: Part II
Lixin Xu
Lixin Xu
Technip, Houston, TX
Search for other works by this author on:
Lixin Xu
Technip, Houston, TX
Paper No:
OMAE2011-49550, pp. 421-426; 6 pages
Published Online:
October 31, 2011
Citation
Xu, L. "Design Optimization of Top-Tensioned Risers for Deepwater HPHT Applications: Part II." Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. Volume 1: Offshore Technology; Polar and Arctic Sciences and Technology. Rotterdam, The Netherlands. June 19–24, 2011. pp. 421-426. ASME. https://doi.org/10.1115/OMAE2011-49550
Download citation file:
10
Views
Related Proceedings Papers
Related Articles
Linear and Nonlinear Approach of Hydropneumatic Tensioner Modeling for Spar Global Performance
J. Offshore Mech. Arct. Eng (February,2010)
Linear Quadratic Regulator Optimal Control of Two-Rotor Wind Turbine Mounted on Spar-Type Floating Platform
J. Offshore Mech. Arct. Eng (April,2023)
Design and Optimization of a Contact-Aided Compliant Mechanism for Passive Bending
J. Mechanisms Robotics (August,2014)
Related Chapters
Energy Resources at Malaysian Sedimentary Basins and Spar Platform as Deep Sea Structure
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Introduction
Corrosion and Materials in Hydrocarbon Production: A Compendium of Operational and Engineering Aspects
A Mathematical Model and Heuristic Procedure for Cellular Layout
International Conference on Software Technology and Engineering, 3rd (ICSTE 2011)