The dynamic stability was investigated of a typical offshore service vessel operating under stability critical operating conditions. Excessive roll motions and relative motions at the stern were studied for two loading conditions for ship speeds ranging from zero to the design speed. A linear frequency-domain seakeeping analysis was followed by nonlinear time-domain simulations of ship motions in waves. Based on results from these methods, critical scenarios were selected and simulated using finite-volume solvers of the Reynolds-averaged Navier-Stokes equations to understand the phenomena related to dynamically unstable ship motions as well as to confirm the results of the simpler analysis methods. Results revealed the possibility of excessive roll motions and water run-up on deck; counter measures such as a ship-specific operational guidance are discussed.

This content is only available via PDF.
You do not currently have access to this content.