Two-degree of freedom vortex-induced vibration (VIV) of a circular cylinder close to a plane boundary is investigated numerically. Two-dimensional (2D) Reynolds-Averaged Navier-Stokes Equations (RANS) and structural dynamic equation are solved using a finite element method (FEM). If the cylinder is initially very close to the plane boundary, it will be bounced back after it collides with boundary. It is assumed that the bouncing back only alters the cylinder’s velocity component perpendicular to the boundary. After it is bounced back, the cylinder’s velocity are determined by Uc = Uc′, Vc = −bVc′, where Uc and Vc are the cylinder’s velocity parallel to the boundary and that perpendicular to the boundary respectively, Uc′ and Vc′ are the velocities before cylinder is bounced back, b is the bounce back coefficient which is between 0 and 1. Numerical results of the vibration amplitude and frequency of a one-degree-of-freedom vibration (transverse to flow direction) of a circular cylinder close to a plane boundary are compared with the experimental data by Yang et al. [1]. The overall trends of the variation of the VIV amplitude with the reduced velocity were found to be in agreement with the experimental results. The calculated amplitude is smaller than the measured data. The frequency of the vibration increases with the increase of reduced velocity. The calculated vibrating frequency agrees well with the experimental data. It was found in this study that vortex-induced vibration (VIV) occurs even when the gap between the cylinder and the plane boundary is zero. This contradicts a perception that VIV would not occur for a pipeline close to the seabed with a gap ratio smaller than 0.3, this is because it was understood that vortex shedding would have been suppressed if the gap between the cylinder and the plane boundary is less than about 0.3 times of cylinder diameter for a fixed cylinder. Two-degree-of-freedom VIV of a circular cylinder close to a plane boundary is studied. The XY-trajectories, the frequency and the amplitude of the vibration are studied. The effects of the cylinder-to-boundary gap and the bounce back coefficient on VIV and the link between the vortex shedding mode and the VIV are discussed.
Skip Nav Destination
ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
June 6–11, 2010
Shanghai, China
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-4914-9
PROCEEDINGS PAPER
Numerical Investigation of Vortex-Induced Vibration of a Circular Cylinder Close to a Plane Boundary
Ming Zhao,
Ming Zhao
The University of Western Australia, Crawley, WA, Australia
Search for other works by this author on:
Liang Cheng
Liang Cheng
The University of Western Australia, Crawley, WA, Australia
Search for other works by this author on:
Ming Zhao
The University of Western Australia, Crawley, WA, Australia
Liang Cheng
The University of Western Australia, Crawley, WA, Australia
Paper No:
OMAE2010-21147, pp. 973-981; 9 pages
Published Online:
December 22, 2010
Citation
Zhao, M, & Cheng, L. "Numerical Investigation of Vortex-Induced Vibration of a Circular Cylinder Close to a Plane Boundary." Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 6. Shanghai, China. June 6–11, 2010. pp. 973-981. ASME. https://doi.org/10.1115/OMAE2010-21147
Download citation file:
18
Views
Related Proceedings Papers
Related Articles
A Two-Dimensional Numerical Investigation of the Hysteresis Effect on Vortex Induced Vibration on an Elastically Mounted Rigid Cylinder
J. Offshore Mech. Arct. Eng (May,2012)
Three-Dimensional Large Eddy Simulations and Proper Orthogonal Decomposition Analysis of Flow Around a Flexibly Supported Circular Cylinder
J. Offshore Mech. Arct. Eng (December,2022)
Near-Bed Flow Mechanisms Around a Circular Marine Pipeline Close to a Flat Seabed in the Subcritical Flow Regime Using a k-ɛ Model
J. Offshore Mech. Arct. Eng (May,2012)
Related Chapters
Vortex-Induced Vibration
Flow Induced Vibration of Power and Process Plant Components: A Practical Workbook
Introduction
Computer Vision for Structural Dynamics and Health Monitoring
Fundamentals of Structural Dynamics
Flow Induced Vibration of Power and Process Plant Components: A Practical Workbook