This paper focuses on the flow dynamics associated with uniform flow past an oscillating cylinder using a 2D Computational Fluid Dynamics (CFD) approach. The simulations were carried out using the Reynolds-Averaged Navier-Stokes (RANS) k-w turbulence model. The numerical model has been validated with experimental data to ensure accuracy of the results. The results were examined for Re = 10,000 and a fixed motion amplitude ratio of A/D = 0.3 and the frequencies of the oscillations were varied in the vicinity of the Strouhal frequency of a fixed cylinder in a free stream. It is noted that a phase switch of the vortex formation will occur as the frequency of the oscillation passes through the Strouhal cylinder frequency. This transition is characterized by a jump in the in-phase and out-of-phase with the velocity components of the forces. The results were examined by analyzing the transfer of energy either from the fluid to the structure or vice versa to quantify the jump in the force components. In the lock-in region, a limit cycle of the cylinder motion and the lift force will form. The energy transfer is then related to the traverse direction of the limit cycle.
Skip Nav Destination
ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering
June 6–11, 2010
Shanghai, China
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-4914-9
PROCEEDINGS PAPER
Investigation of Fluid-Structure Interactions on Controlled Oscillations of a Cylinder at Moderate Reynolds Number
Muhamad H. Kamarudin,
Muhamad H. Kamarudin
J. P. Kenny Pty. Ltd., Perth, WA, Australia
Search for other works by this author on:
Krish P. Thiagarajan
Krish P. Thiagarajan
The University of Western Australia, Crawley, WA, Australia
Search for other works by this author on:
Muhamad H. Kamarudin
J. P. Kenny Pty. Ltd., Perth, WA, Australia
Krish P. Thiagarajan
The University of Western Australia, Crawley, WA, Australia
Paper No:
OMAE2010-20918, pp. 853-862; 10 pages
Published Online:
December 22, 2010
Citation
Kamarudin, MH, & Thiagarajan, KP. "Investigation of Fluid-Structure Interactions on Controlled Oscillations of a Cylinder at Moderate Reynolds Number." Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. 29th International Conference on Ocean, Offshore and Arctic Engineering: Volume 6. Shanghai, China. June 6–11, 2010. pp. 853-862. ASME. https://doi.org/10.1115/OMAE2010-20918
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Extending a Van Der Pol-Based Reduced-Order Model for Fluid–Structure Interaction Applied to Non-Synchronous Vibrations in Turbomachinery
J. Turbomach (March,2022)
Flow Structure in the Wake of a Rotationally Oscillating Cylinder
J. Fluids Eng (June,2000)
Related Chapters
Vortex-Induced Vibration
Flow Induced Vibration of Power and Process Plant Components: A Practical Workbook
CFD Simulations of a Mixed-flow Pump Using Various Turbulence Models
Mixed-flow Pumps: Modeling, Simulation, and Measurements
Two Advanced Methods
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine