With the increasing of flow rate during fracturing in deep gas well, the erosion of fracturing tubing is an issue of immense concern to the industry. Based on the Euler-Euler two–fluid theory, the numerical simulations have been performed to predict the flow field in the sudden expansion fracturing tubing. The velocity distributions and sand concentration profiles are obtained, and the simulation results show that separation and reflux come into being in the sudden expansion fracturing tubing when pumping sand slurries at high rate, and the sand concentration increases at some regions. The erosion and failure of the fracturing tubing are relevant to the sand concentration, the velocity and the impact angle. The erosion model was established with the erosion experiment, and the numerical simulation results were used to describe the erosion rate of sudden expansion fracturing tubing according to the established erosion models. The mainly erosion region obtained through the simulation is basically agree with the failure region of tubing during fracturing in deep gas wells.

This content is only available via PDF.
You do not currently have access to this content.