The structural integrity of offshore pipelines is of vital importance for safe oil and gas transport. To ensure the required safety level, non-linear Finite Element (FE) analyses are necessary to perform fracture assessment of pipes under various, realistic loading conditions. Many standard material models, as found in commercial FE codes, pre-suppose the yield criterion of von Mises. This choice provides in many cases reasonable accuracy, certainty and engineering designs, but for some materials and application areas, it is much too inaccurate. In this work, 3D elastic–plastic FE simulations of pipes with internal surface cracks have been carried out. The aim of the work is to evaluate the influence of the yield criterion on the predicted fracture response. Analyses are performed on pipes loaded in tension, with and without internal pressure. The model shows that the yield surface shape may have a significant effect on the predicted evolution of Crack Tip Opening Displacement (CTOD). If the internal pressure is weak, a reduction in strain capacity is observed when the yield surface shape is varied from the rounded von Mises towards the cornered Tresca-like yield surface.

This content is only available via PDF.
You do not currently have access to this content.