In several offshore applications hot-finished pipe that often exhibits Lu¨ders bands is bent to strains of 2–3%. Lu¨ders banding is a material instability that leads to inhomogeneous plastic deformation in the range of 1–4%. It can precipitate structural instabilities and collapse of the pipe. Experiments and analysis are used to study the interaction of the prevalent structural instabilities under bending with Lu¨ders banding, with the objective of providing guidance to the designer. Pure bending experiments on tubes of various D/t values reveal that Lu¨ders bands result in the development of inhomogeneous deformation in the structure, in the form of coexistence of two curvature regimes. Under rotation controlled bending, the higher curvature zone(s) gradually spreads while the moment remains essentially unchanged. For relatively low D/t tubes with relatively smaller Lu¨ders strain, the whole tube eventually is deformed to the higher curvature, subsequently entering the usual hardening regime where it continues to deform uniformly until the expected limit state is reached. For higher D/t tubes and/or for materials with longer Lu¨ders strain, the structure collapses during the inhomogeneous deformation regime. This class of problems is analyzed using 3D finite elements and an elastic-plastic constitutive model with an up-down-up material response. It will be demonstrated that the solution procedure followed can simulate the experiments with consistency.

This content is only available via PDF.
You do not currently have access to this content.