The slamming of waves on the lower deck of large volume offshore platforms has received increased attention over recent years. For many existing platforms, the problem of insufficient air-gap clearance has become more acute of late due to more extreme weather conditions than was used in their original design basis and/or due to issues such as subsidence of gravity based structures. To investigate this problem, MARINTEK’s Wave Impact Loads JIP has, in one of its sub-tasks, focused towards an idealised model test setup of a rectangular block in regular waves. The block is fixed at a distance h above the calm water line. Both 2D and 3D model test experiments of the block in regular waves have been carried out in Phase 1 of the JIP (2008). This paper considers results from the 2D model test setup, and compares the measured vertical loading on the deck against two simple potential theory based methods (Baarholm, OMAE 2009-79560) and against results from a CFD code (STAR-CCM+). The results demonstrate that a second impact event closely following a first impact event can have a much flatter free-surface profile (and stronger water entry force) as a result of its interaction with the (deck) diffracted wave from the first impact event. The importance of resolving this diffracted wave in the CFD analysis is demonstrated. The paper concludes that for isolated impact events the simple potential flow based models, which do not consider the influence of one impact event on another, are adequate to predict the vertical loading on the deck. However, from a design basis criteria, if there is the strong likelihood of steep wave groupings resulting in closely following wave-in-deck impact events, then the presented simple methods may be non-conservative, and a CFD (Computational Fluid Dynamics) analysis or model test may be advisable to predict the vertical wave-in-deck loading. However the horizontal loading was significantly under-predicted in the CFD analysis compared to the measurements, so more work still needs to be done in this respect.

This content is only available via PDF.
You do not currently have access to this content.