Basing on the nonlinear dynamics theory, the global stability of ship in stochastic beam sea is researched by the global bifurcation method. In this paper, bounded noise is first briefly introduced. Bounded noise is a harmonic function with constant random frequency and phase. It has finite power and its spectral shape can be made to fit a target spectrum, such as Pierson-Moskowitz spectrum, by adjusting its parameters. This paper considered the stochastic excitation term as bounded noise and the influence of nonlinear damping and nonlinear righting moment, setup the random single degree of freedom nonlinear rolling equation. Then the random Melnikov process for the nonlinear system with homoclinic orbits under both dissipative and bounded noise perturbations is derived. The random Melnikov mean-square criterion is used to analysis the global stability of this system. The research indicates that the bounded noise can approximately simulate the wave excitation and if the noise exceeds the threshold value, the ship will undergo stochastic chaotic motion. That will lead ships to instability and even to capsizing.

This content is only available via PDF.
You do not currently have access to this content.