The formulation of the second-order wave-current-body problem in the inertial coordinate system involves higher-order derivatives in the body boundary condition. A new method taking advantage of the body-fixed coordinate system in the near field is presented to avoid the calculation of higher-order derivatives in the body boundary condition. The new method has advantage over the traditional method when the body surface is with sharp corner or high curvature. The nonlinear wave diffraction and forced oscillation of floating bodies are studied up to second order in wave slope. A small forward speed is taken into account. The results of the new method are compared with that of the traditional method based on a formulation in the inertial coordinate system. When the traditional method applies, good agreement has been obtained.

This content is only available via PDF.
You do not currently have access to this content.