We investigate a lift based wave energy converter (WEC), namely, a cycloidal turbine, as a wave termination device. A cycloidal turbine employs the same geometry as the well established Cycloidal or Voith-Schneider Propeller. The interaction of intermediate water waves with the Cycloidal WEC is presented in this paper. The cycloidal WEC consists of a shaft and one or more hydrofoils that are attached eccentrically to the main shaft and can be adjusted in pitch angle as the Cycloidal WEC rotates. The main shaft is aligned parallel to the wave crests and fully submerged at a fixed depth. We show that the geometry of the Cycloidal WEC is suitable for wave termination of straight crested waves. Two-dimensional potential flow simulations are presented where the hydrofoils are modeled as point vortices. The operation of the Cycloidal WEC both as a wave generator as well as a wave energy converter interacting with a linear Airy wave is demonstrated. The influence that the design parameters radius and submergence depth on the performance of the WEC have is shown. For optimal parameter choices, we demonstrate inviscid energy conversion efficiencies of up to 95% of the incoming wave energy to shaft energy. This is achieved by using feedback control to synchronize the rotational rate and phase of the Cycloidal WEC to the incoming wave. While we show complete termination of the incoming wave, the remainder of the energy is lost to harmonic waves travelling in the upwave and downwave direction.

This content is only available via PDF.
You do not currently have access to this content.