Spectral fatigue analysis approach is highly recommended for fixed offshore platform design and reassessment by API. This method is a computationally efficient method, being able to handle the random nature of environmental ocean wave conditions during calculating wave loads on the offshore platforms and subsequent structural responses. However, its fundamental theory is based on the assumption of linearity of both structural system and wave loading mechanism. Although this method is critically appropriate to be applied in offshore platform design and fatigue assessment for deep water scenarios where wave and force nonlinearities are not very severe, it has still been widely utilized for the design and assessment of shallow water platforms in offshore industry without carefully considering possible errors caused by strong nonlinear factors between ocean waves and forces. The source giving rise to the errors is because of the difficulties in choosing suitably correct wave heights for a series of wave periods required for producing transfer functions between sea state spectra and structural response spectra. Therefore, the studies to justify the possible errors of the spectral fatigue analysis method for shallow water platforms have been provoked. This paper presents the results of the studies of investigating the errors from currently existing spectral fatigue analysis method. A new technical approach that can reduce the errors in the spectral fatigue analysis of shallow water platforms is introduced. The proposed technical approach is mainly focused on producing realistic transfer functions between sea state spectra and structural response spectra, which can reasonably reflect the individually local sea state data by using wave height-period joint probability density function. Hence the fatigue damage and life at the tubular joints of offshore platforms can be more precisely predicted. The spectral fatigue analysis of a practical shallow water jacket platform in the recent platform design project has been performed using the proposed approach and the results are discussed.

This content is only available via PDF.
You do not currently have access to this content.