The most challenging aspect of a deepwater development is the riser system, and a cost-effective choice is the Steel Catenary Riser (SCR). Fatigue is often a governing design consideration, and it is usually most critical at the touchdown point (TDP) where static and dynamic bending stresses are highest. Unfortunately, it is also at this region that uncertainty is the maximum. The increased uncertainty casts doubt on the applicability of generic safety factors recommended by design codes, and the most consistent way of ensuring the structural safety of the SCR is to employ a reliability-based approach, which has so far not received attention in SCR design. As the number of basic random variables affects the complexity of a reliability analysis, these variables should be selected with caution. To this end, the aim of this paper is to draw up a comprehensive list of design parameters that may contribute meaningfully to the uncertainty of the fatigue damage. From this list, several parameters are selected for sensitivity studies using the commercial package Orcaflex. It is found that variations in seabed parameters such as soil stiffness, soil suction and seabed trench can have a pronounced influence on the uncertainty of the fatigue damage at the touchdown point.

This content is only available via PDF.
You do not currently have access to this content.