This study reports the transformations between the third-order Eulerian and Lagrangian solutions for the standing gravity waves on the uniform depth. Regarding the motion of a marked fluid particle, the instantaneous velocity, the mass conservation and the free surface must be the same for either Eulerian or Lagrangian methods. We impose the assumption that the Lagrangian wave frequency is a function of wave steepness. Expanding the unknown function in a small perturbation parameter and using a successive expansion in a Taylor series for the water particle path and the period of a particle motion, the third order asymptotic expressions for the particle trajectories and the period of particle motion can be derived directly in Lagrangian form. It shows that the given Eulerian solutions are capable of being transformed into the completely unknown Lagrangian solutions and the reversible process is also identified.

This content is only available via PDF.
You do not currently have access to this content.