The paper summarizes results of an engineering investigation on advanced joining technology for hybrid (composite-metal) structures. Polymer Matrix Composites (PMC) used in structural applications are known to reduce structure weight, lower life-cycle cost and, in case of a floating platform, improve the deadweight/displacement ratio. While beneficial, PMC applications for large hull structures have certain limitations in size and volume of seamless structural component without using joints. A hybrid hull that consists of both metal and composite structural members potentially enables desirable enhancements of structural efficiency, but robust joining between those heterogeneous structures must be employed. A recently completed feasibility study has been performed involving a novel hybrid joining concept-technology based on a combination of conventional adhesive bonding with novel metal surface preparation. Computer simulation of the joint structural behavior and failure, development of a material processing procedure based on adaptation of Vacuum-Assisted Resin Transfer Molding (VARTM) process to manufacturing of a large hybrid structure, fabrication of pilot joint test articles, and tensile testing of those to failure, have been performed as part of the feasibility study. Two sets of the hybrid joint were tested, the novel joint being developed and its conventionally bonded analogue without the novel surface preparation considered as a base-line joint. The tests resulted with 48%-increase of load-bearing capability of the novel joint and a good match between generated computed and experimental data.
Skip Nav Destination
ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
May 31–June 5, 2009
Honolulu, Hawaii, USA
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-4346-8
PROCEEDINGS PAPER
Advanced Hybrid Joining Technology
Vladimir M. Shkolnikov,
Vladimir M. Shkolnikov
Concurrent Technologies Corporation (CTC), Johnstown, PA
Search for other works by this author on:
Gabriel J. Hostetter,
Gabriel J. Hostetter
Concurrent Technologies Corporation (CTC), Johnstown, PA
Search for other works by this author on:
David K. McNamara,
David K. McNamara
Concurrent Technologies Corporation (CTC), Johnstown, PA
Search for other works by this author on:
Joseph R. Pickens,
Joseph R. Pickens
Concurrent Technologies Corporation (CTC), Johnstown, PA
Search for other works by this author on:
Stanley P. Turcheck, Jr.,
Stanley P. Turcheck, Jr.
Concurrent Technologies Corporation (CTC), Johnstown, PA
Search for other works by this author on:
Bruce G. I. Dance
Bruce G. I. Dance
TWI, Ltd., Cambridge, UK
Search for other works by this author on:
Vladimir M. Shkolnikov
Concurrent Technologies Corporation (CTC), Johnstown, PA
Gabriel J. Hostetter
Concurrent Technologies Corporation (CTC), Johnstown, PA
David K. McNamara
Concurrent Technologies Corporation (CTC), Johnstown, PA
Joseph R. Pickens
Concurrent Technologies Corporation (CTC), Johnstown, PA
Stanley P. Turcheck, Jr.
Concurrent Technologies Corporation (CTC), Johnstown, PA
Bruce G. I. Dance
TWI, Ltd., Cambridge, UK
Paper No:
OMAE2009-79769, pp. 167-174; 8 pages
Published Online:
February 16, 2010
Citation
Shkolnikov, VM, Hostetter, GJ, McNamara, DK, Pickens, JR, Turcheck, SP, Jr., & Dance, BGI. "Advanced Hybrid Joining Technology." Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. Volume 6: Materials Technology; C.C. Mei Symposium on Wave Mechanics and Hydrodynamics; Offshore Measurement and Data Interpretation. Honolulu, Hawaii, USA. May 31–June 5, 2009. pp. 167-174. ASME. https://doi.org/10.1115/OMAE2009-79769
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
Effect of Cyclic Heat, Humidity, and Joining Method on the Static and Dynamic Performance of Lightweight Multimaterial Single-Lap Joints
J. Manuf. Sci. Eng (October,2015)
Static and High Strain Rate Compression Response of Thick Section Twill Weave S-2 Glass/Vinyl Ester Composites Manufactured by Affordable Liquid Molding Processes
J. Eng. Mater. Technol (October,1999)
Statistical Characterization of Ultrasonic Additive Manufacturing Ti/Al Composites
J. Eng. Mater. Technol (October,2010)
Related Chapters
Concluding Remarks and Future Work
Ultrasonic Welding of Lithium-Ion Batteries
Motion Analysis for Multilayer Sheets
Ultrasonic Welding of Lithium-Ion Batteries
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design