For prediction of vortex-induced vibrations (VIV) the empirical models apply hydrodynamic coefficients to represent the fluid forces on the slender structures. The coefficients are in most cases found by measuring forces on a rigid cylinder under harmonic pure in-line (IL) or pure cross-flow (CF) forced motions, and are generally presented as functions of non-dimensional motion amplitude and frequency. The objective of the present work has been to find hydrodynamic coefficients for realistic combinations of CF and IL motions. Such trajectories were found from measured VIV of a flexible beam, and then used as forced motions of a rigid cylinder in uniform flow. Hydrodynamic forces were measured and used for calculation of hydrodynamic coefficients. The diameter of the rigid cylinder was larger than for the flexible beam in order to obtain optimum conditions for both experiments. However, both Reynolds number and non-dimensional frequency were identical for the two test types. The flexible beam oscillations were not perfectly periodic, but close to. More than one periodic trajectory could hence be identified as representative for the observed response, and these were used as forced motions in order to study the variability of the hydrodynamic coefficients. Alternative harmonic loops were also constructed in order to investigate the potential for using coefficients from harmonic tests as basis for empirical models. The vortex shedding process behind the cylinder has been mapped using Particle Image Velocimetry (PIV). PIV planes can picture the difference in cylinder wake for these trajectories and thus help to understand the process. The vorticity patterns at instantaneous positions for both periodic and harmonic trajectories are obtained. The vortices were mapped and the forces were measured simultaneously. Higher order harmonic components of the force are seen for all types of trajectories, and a correlation between these components and the vortex shedding pattern is observed.
Skip Nav Destination
ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering
May 31–June 5, 2009
Honolulu, Hawaii, USA
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-4345-1
PROCEEDINGS PAPER
Vortex Pattern Comparison for Periodic and Harmonic Combined Cross-Flow and In-Line Forced Oscillations
Prashant K. Soni,
Prashant K. Soni
Det Norske Veritas, Trondheim, Norway
Search for other works by this author on:
Carl M. Larsen
Carl M. Larsen
Norwegian University of Science and Technology, Trondheim, Norway
Search for other works by this author on:
Prashant K. Soni
Det Norske Veritas, Trondheim, Norway
Carl M. Larsen
Norwegian University of Science and Technology, Trondheim, Norway
Paper No:
OMAE2009-80089, pp. 853-867; 15 pages
Published Online:
February 16, 2010
Citation
Soni, PK, & Larsen, CM. "Vortex Pattern Comparison for Periodic and Harmonic Combined Cross-Flow and In-Line Forced Oscillations." Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. Volume 5: Polar and Arctic Sciences and Technology; CFD and VIV. Honolulu, Hawaii, USA. May 31–June 5, 2009. pp. 853-867. ASME. https://doi.org/10.1115/OMAE2009-80089
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Flow Structure in the Wake of a Rotationally Oscillating Cylinder
J. Fluids Eng (June,2000)
Estimation of Hydrodynamic Forces on Cylinders Undergoing Flow-Induced Vibrations Based on Modal Analysis
J. Offshore Mech. Arct. Eng (December,2022)
Wake Topology of a Cylinder Undergoing Vortex-Induced Vibrations With Elliptic Trajectories
J. Fluids Eng (May,2016)
Related Chapters
Vortex-Induced Vibration
Flow Induced Vibration of Power and Process Plant Components: A Practical Workbook
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Random Turbulence Excitation in Single-Phase Flow
Flow-Induced Vibration Handbook for Nuclear and Process Equipment