In this numerical study, we build response surfaces of two degree-of-freedom vortex-induced vibrations (VIV) of flexibly mounted cylinders for a wide range of transverse and in-line natural frequencies. We consider both the structure and the flow to be two-dimensional and the structure has a low mass damping. The emphasis is put on the representation of the hydrodynamic loads acting on the cylinder in response to the change in the natural frequencies of the structure. The system is sampled for a wide range of natural frequencies within the synchronization region, totaling 149 two-dimensional flow-structure simulations. The parametric range of the in-line frequency is chosen to be larger than the one of the transverse frequency in order to favor multi-modal responses. No preferred frequencies are emphasized within the intervals of study. The fully spectral numerical approach relies on a stochastic collocation method coupled to a spectral element-based deterministic solver.

This content is only available via PDF.
You do not currently have access to this content.