The paper describes a fluid-structure interaction (FSI) modeling approach to predict the VIV response of a flexible pipe by coupling a three-dimensional viscous incompressible Navier-Stokes solver with a beam finite element solver – in time domain. The flexible pipe is modeled as an Euler-Bernoulli beam subject to instantaneous flow-induced forces and solved using C1 conforming finite element basis functions in space and an unconditionally stable Newmark-type discretization scheme in time. At each time step the instantaneous incremental displacement is fed back to the fluid flow solver, where the position of the pipe is updated to compute the resulting instantaneous flow field and associated flow-induced forces. Numerical predictions from the FSI model are compared to experimental measurements of a flexible pipe subject to uniform free-stream currents.

This content is only available via PDF.
You do not currently have access to this content.