1:30 and 1:50 model-scale ice tests of an ice-resistant Spar design were carried out to determine the loads on the Spar in level ice and ice ridges. Due to limitations in the depth of the ice test facility, the hull draft and mooring system were truncated. The 1:30 scale model was towed through the ice on a fixed and compliant dynamometer. The stiffness characteristics of the compliant dynamometer matched the horizontal stiffness of the full-scale mooring system. The purpose of these tests was to compare the mooring and ice loads measured in fixed and compliant conditions. The 1:50 scale model was truncated by 70 m. Its mooring system was modeled using a four-line system designed to give the same global restoring forces as the full-scale mooring system. The model was fitted with vertical plates on the exterior of the hull to compensate for loss of added mass and added moment of inertia. A limited number of tests were carried out at the two model scales in the same ice conditions to investigate scaling effects. The mooring and ice loads measured in the fixed and compliant conditions were found to be similar, indicating that loads estimated, assuming the structure is fixed, provide good estimates. Good agreement between the two models was also found for the tests carried out in the same ice conditions, suggesting that the scaling effects may be negligible.

This content is only available via PDF.
You do not currently have access to this content.