Ships vibrate due to waves, and these wave induced vibrations can not easily be avoided by moderate changes to the hull lines. The waves may cause the whole hull girder to vibrate due to springing (resonance) and whipping (transient response), which increase the fatigue and extreme loading. Recently this has also become an industry concern. Modern hull monitoring systems in combination with model tests are the best tools to answer the key questions: How important is the wave induced vibrations, and does it have to be included in design? This paper addresses the effect of whipping on the extreme loading. Measurements have been carried out on two container vessels operating in the North Atlantic. An elastic model of the larger vessel has also been tested. Results are obtained at quarter lengths and amidships. From the measurements the increase due to whipping is considerable, even though the wave conditions are not extreme. The full scale measurements and model test show that IACS URS11 rule loads may be exceeded in less than extreme sea states, in particularly amidships and in the aft ship. The IACS UR S11 may need revision for container ship design. MAIB’s report based on the investigation of the MSC Napoli incident (vessel broke in two) also recommends increased requirements for container ship design and further research into the effect of whipping.

This content is only available via PDF.
You do not currently have access to this content.