The paper deals with the investigation of the effect that floaters’ hydrodynamics has on the performance characteristics of tightly moored vertical axisymmetric wave energy converters. Several geometries of WEC’s floaters have been examined by assuming that they have constant displacement. Specifically, a cylindrical body with and without vertical and horizontal skirts at its bottom, a cone and a two–body, piston–like arrangement, which consists of an internal cone and an exterior torus, have been investigated and comparatively assessed. The WEC’s first-order hydrodynamic characteristics, i.e. their exciting wave forces and the correspondent hydrodynamic parameters, are evaluated using a linearized diffraction–radiation semi-analytical method. A dynamical model for evaluating of the floaters’ performance in time domain is developed that properly accounts for the floaters hydrodynamic behavior, the modeling of the hydraulic system and of the power take–off mechanism. The effect of the floaters geometry on the efficiency of the converter is analyzed through the results for the power absorption, under the excitation of several sea states.

This content is only available via PDF.
You do not currently have access to this content.