It has been demonstrated in previous work that, for deepwater applications, the cold forming process involved in UOE pipe manufacturing significantly reduces pipe collapse strength. To improve the understanding of these effects, Tenaris has embarked on a program to model the stages of the UOE manufacturing process using finite element methods. Previous phases of this work formulated the basis for model development and described the 2D approach taken to model the various stages of manufacture. More recent developments included some modeling enhancements, sensitivity analyses, and comparison of predictions to the results of full-scale collapse testing performed at C-FER. This work has shown correlations between manufacturing parameters and collapse pressure predictions. The results of the latest phase of the research program are presented in this paper. This work consists of full-scale collapse testing and extensive coupon testing on samples collected from various stages of the UOE pipe manufacturing process including plate, UO, UOE, and thermally-aged UOE. Four UOE pipe samples manufactured with varying forming parameters were provided by Tenaris for this test program along with associated plate and UO samples. Full-scale collapse and buckle propagation tests were conducted on a sample from each of the four UOE pipes including one that was thermally aged. Additional coupon-scale work included measurement of the through-thickness variation of material properties and a thermal ageing study aimed at better understanding UOE pipe strength recovery. The results of these tests will provide the basis for further refinement of the finite element model as the program proceeds into the next phase.

This content is only available via PDF.
You do not currently have access to this content.