Recently, several power plants from the rotation of turbine with tidal current have been tried. Since the density of seawater is 800 times as much as that of the air, the loading of water on a turbine strictly requires much more strength and stiffness of blade compared with the wind turbine. Neither wind turbine nor standard hydroelectric dam turbines can simply be submerged into an ocean current. There are some formidable technical challenges to be overcome compared with the wind turbine. Key issues are cost effectiveness, structural integrity and workability in access and installation. The metal blade has enough strength, but is too heavy to install and handle easily. The light weight and extreme strength are essential to the blade. The objective of this work is to determine the mechanical properties of the tidal turbine, and to examine the availability of the turbine blade of composite materials for an approach to eliminate the above problems. The study was conducted in the preliminary study of the demonstration plant, which will be settled in Oma Promontory, Aomori Prefecture in Japan, whose maximum power output is 300kW and turbine diameter is 11 meters. A number of materials were considered, i.e. comprised rolled steel, aluminum bronze, GFRP for blade. We made two models for structural study based on the propeller blade shape with thin section and the wind turbine blade shape with thick section. The FEM analysis were conducted as follows, Aluminum-Bronze solid model with propeller shape; the real model at the present moment in the Oma plant. Composite material solid model; same shape as propeller but applied with composite materials. Composite material shell model with wind turbine blade Shape; structured by monocoque construction with changing the thickness by 10mm from 10mm to 50mm. The properties of GFRP for the structural study were measured from the ISO-laminates, which were fabricated by VaRTM, of multi-axial non-crimp fabrics and epoxy. Furthermore, the vibratory cavitation erosion tests of Composite materials were conducted. In order to compare with the aluminum bronze and composite, each cavitations weight loss in fresh-water were measured and observed. As the result, the multi-axial GFRP for propeller type blade was insufficient in rigidity and strength of shear. It is necessary to use not GFRP but CFRP for the propeller type blade. In contrast, as for wind turbine type blade, it was led to the conclusion GFRP blade is workable. As for erosion, the durability of composite materials is remarkably inferior to metals.
Skip Nav Destination
ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering
June 15–20, 2008
Estoril, Portugal
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-4823-4
PROCEEDINGS PAPER
Study of the Characteristic and Possibility for Applying Composite Materials to the Blades of Tidal Power Generation Available to Purchase
Kiyoshi Uzawa,
Kiyoshi Uzawa
University of Tokyo, Tokyo, Japan
Search for other works by this author on:
Kazuro Kageyama,
Kazuro Kageyama
University of Tokyo, Tokyo, Japan
Search for other works by this author on:
Hideaki Murayama,
Hideaki Murayama
University of Tokyo, Tokyo, Japan
Search for other works by this author on:
Isamu Ohsawa,
Isamu Ohsawa
University of Tokyo, Tokyo, Japan
Search for other works by this author on:
Makoto Kanai,
Makoto Kanai
University of Tokyo, Tokyo, Japan
Search for other works by this author on:
Tatsuya Nishiyama,
Tatsuya Nishiyama
University of Tokyo, Tokyo, Japan
Search for other works by this author on:
Akihisa Shichiri
Akihisa Shichiri
University of Tokyo, Tokyo, Japan
Search for other works by this author on:
Kiyoshi Uzawa
University of Tokyo, Tokyo, Japan
Kazuro Kageyama
University of Tokyo, Tokyo, Japan
Hideaki Murayama
University of Tokyo, Tokyo, Japan
Isamu Ohsawa
University of Tokyo, Tokyo, Japan
Makoto Kanai
University of Tokyo, Tokyo, Japan
Tatsuya Nishiyama
University of Tokyo, Tokyo, Japan
Akihisa Shichiri
University of Tokyo, Tokyo, Japan
Paper No:
OMAE2008-57738, pp. 721-728; 8 pages
Published Online:
July 27, 2009
Citation
Uzawa, K, Kageyama, K, Murayama, H, Ohsawa, I, Kanai, M, Nishiyama, T, & Shichiri, A. "Study of the Characteristic and Possibility for Applying Composite Materials to the Blades of Tidal Power Generation." Proceedings of the ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. Volume 6: Nick Newman Symposium on Marine Hydrodynamics; Yoshida and Maeda Special Symposium on Ocean Space Utilization; Special Symposium on Offshore Renewable Energy. Estoril, Portugal. June 15–20, 2008. pp. 721-728. ASME. https://doi.org/10.1115/OMAE2008-57738
Download citation file:
41
Views
Related Proceedings Papers
Related Articles
Stochastic Models Related to Fatigue Damage of Materials
J. Energy Resour. Technol (December,1991)
Analytical and Experimental Studies of Short-Beam Interlaminar Shear Strength of G-10CR Glass-Cloth/Epoxy Laminates at Cryogenic Temperatures
J. Eng. Mater. Technol (January,2001)
On Displacement Fields in Orthotropic Laminates Containing an Elliptical Hole
J. Appl. Mech (September,2000)
Related Chapters
Hydro Power Generation: Global and US Perspective
Energy and Power Generation Handbook: Established and Emerging Technologies
Hydro Power: Global and North American Perspectives
Hydro, Wave and Tidal Energy Applications
Novel and Efficient Mathematical and Computational Methods for the Analysis and Architecting of Ultralight Cellular Materials and their Macrostructural Responses
Advances in Computers and Information in Engineering Research, Volume 2