Defects and damage in a structural joint can trigger a critical degradation or collapse of the structure. Among joints, welded joints have many uncertainties, such as remaining stress, initial defects, and heat-affected zone. Such uncertainties in a welded joint can also induce a strain fluctuation, when they are subjected to a load. Conversely, the strain fluctuation along the weld line may represent the presence of uncertainties in the welded joint. This means that monitoring strain distribution along the weld line can be good way to assess their integrity and improve reliability of the structure. We have developed a novel distributed strain measurement technique which can measure strain distributions along fiber Bragg gratings (FBG) in an optical fiber and has the high spatial resolution and we applied it to strain monitoring of a welded tubular joint. The spatial resolution o is less than 1 mm and it was confirmed by measurement simulations and experiments. Then, we measured the strain distributions along the weld line of the tubular joint of a steel pipe subjected to a tensile load by the developed measurement system. We could successfully measure the development of the strain distribution along the weld line, where the sharply fluctuating strain distributions resulting from some defects were observed. In this paper, we describe the measurement principle and performance of the optical fiber sensor, and then show the results of strain monitoring in the welded joint.

This content is only available via PDF.
You do not currently have access to this content.