The interest and the studies on nonlinear waves are increased recently for their importance in the interaction with floating and fixed bodies. It is also well known that nonlinearities influence wave crest and wave trough distributions, both deviating from Rayleigh law. In this paper a theoretical crest distribution is obtained taking into account the extension of Boccotti’s Quasi Determinism theory, up to the second order for the case of three-dimensional waves, in finite water depth. To this purpose the Fedele & Arena [2005] distribution is generalized to three-dimensional waves on an arbitrary water depth. The comparison with Forristall second order model shows the theoretical confirmation of his conclusion: the crest distribution in deep water for long-crested and short crested waves are very close to each other; in shallow water the crest heights in three dimensional waves are greater than values given by long-crested model.

This content is only available via PDF.
You do not currently have access to this content.