The purpose of the study is suggest a methodology to be applied in ocean platforms and ships in order to appraise the maximum impact pressure due to the slamming occurrence in the hull shape near its bottom or horizontal regions. This methodology uses a theory based on potential flow. However, there are some phenomena such as creation of a compressible air pocket between the body and free surface at the impact moment that requires a more complete theory and or experimental methods. This gives rise to experimental coefficients to reduce the theoretical errors. The procedure presented here goes by the platform motion dynamics and “impact topology” to allow the potential to be used. Due to the complexity of the phenomenon studied and need for certifying accuracy and precision of the results, tank tests at the LabOceano model basin were carried out. The results showed a good fitting between numerical results and experiments. It should also be pointed out that the pressure sensor used in these experiments gives a pressure distribution over the instrumented area what brings more reliability on the results and a better visibility to the slamming phenomenon. Lastly the methodology in this work stands out as an important tool to evaluate slamming loads.

This content is only available via PDF.
You do not currently have access to this content.