This paper concerns the numerical description of nonlinear waves propagating over the storage caissons of a gravity based structure. This process produces a steepening of the incident wave-field, which occurs when the waves propagate into the shallower water region above the storage caissons, resulting in the focussing of wave energy. A fully nonlinear Multiple-flux Boundary Element Method (MF-BEM) is applied to simulate this effect. The MF-BEM differs from traditional boundary integral approaches in two important respects: first, a multiple-flux approach is employed to overcome the problem of geometric discontinuities; and, second, no filtering, smoothing, re-gridding or redistribution of the nodes is performed at any stage during the simulations. These two aspects are believed to play an important role in accurately predicting the steepening of the incident wave-field. The numerical predictions are compared to new laboratory observations that examine the extent of this wave-structure interaction and, particularly, the steepening of the incident wave-field.

This content is only available via PDF.
You do not currently have access to this content.