The basic principle of wave superposition in the analysis of irregular linear wave problems such as the analysis of the wave surface itself or forces on large volume or slender structures, has been used for more than fifty years. Also the extension of the perturbation solution to second and in some cases third order is well known. In the nonlinear extension of the perturbation scheme, the basic idea is that nonlinear interaction between two or, in the third order case, three wave components can take place. The solution may therefore be found for two or three wave components and extended to the interaction of all wave components without further calculation. Whereas this superposition idea is an efficient and accurate method to determine wave loads and properties, the convergence properties with respect to the high frequency tail of the spectrum is often neglected. Many of the terms arising in practical applications increase rapidly as the frequency increases so that their convergence properties in a continuous wave spectrum are strongly dependent on the tail of the wave spectrum. The lack of convergence with respect to frequency will typically lead to a choice of: • Using an equivalent regular wave to represent the problem knowing that a regular wave cannot represent all the relevant physical and statistical properties of the wave field; • Make a sensible truncation of the wave spectrum knowing that the chosen truncation frequency affects the results; • Resort to an engineering solution such as the Wheeler (1970) stretching technique for crest kinematics above the crest. It is the object of the present paper to investigate the requirements to linear and second order problems to converge with respect to frequency. Using the Lindgren (1970) properties of a wave crest in a linear wave field and linear Monte Carlo simulations, it is found that requirements to convergence in a spectrum with an ω−4 and ω−5 tail is very strict indeed. It is further found that it is convenient to distinguish between problems where the linear component itself is not defined and problems where the linear component is defined but where the higher order component is not defined. It is shown that the latter problem may be overcome and an example of this is given.
Skip Nav Destination
ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering
June 15–20, 2008
Estoril, Portugal
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
978-0-7918-4821-0
PROCEEDINGS PAPER
On the Use of Linear and Weakly Nonlinear Wave Theory in Continuous Ocean Wave Spectra: Convergence With Respect to Frequency
Thomas B. Johannessen
Thomas B. Johannessen
Aker Kværner Engineering & Technology, Lysaker, Norway
Search for other works by this author on:
Thomas B. Johannessen
Aker Kværner Engineering & Technology, Lysaker, Norway
Paper No:
OMAE2008-57355, pp. 211-217; 7 pages
Published Online:
July 27, 2009
Citation
Johannessen, TB. "On the Use of Linear and Weakly Nonlinear Wave Theory in Continuous Ocean Wave Spectra: Convergence With Respect to Frequency." Proceedings of the ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. Volume 4: Ocean Engineering; Offshore Renewable Energy. Estoril, Portugal. June 15–20, 2008. pp. 211-217. ASME. https://doi.org/10.1115/OMAE2008-57355
Download citation file:
30
Views
Related Proceedings Papers
Related Articles
Nonlinear System Identification in Offshore Structural Reliability
J. Offshore Mech. Arct. Eng (August,1995)
Ocean Wave Spectral Estimation Using Vessel Wave Frequency Motions
J. Offshore Mech. Arct. Eng (May,2007)
Future Directions in the Study of Nonconservative Water Wave Systems
J. Offshore Mech. Arct. Eng (February,2003)
Related Chapters
A Novel Approach for LFC and AVR of an Autonomous Power Generating System
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
A Comparison of Different Monte Carlo Approaches to RAMS Analysis (PSAM-0355)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
The Research on Infrared Radiation Images of Ocean Waves
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)