We investigate the dynamics of a three-dimensional mine-shaped body falling through water deterministically and stochastically. A physics-based deterministic model, MINE6D, is developed for the prediction of the six degree-of-freedom motion of the body falling freely through water. In MINE6D, the hydrodynamic load due to the added inertia effect is obtained exactly by using a boundary-element method while the viscous drag associated with flow separation and vortex shedding is modeled using a quasi-steady approach. Since the mine motion is found to be highly sensitive to varying the physical parameters such as body geometry, mass distribution, and initial releasing conditions, we develop a stochastic model using Monte-Carlo MINE6D simulation for the statistical analysis of mine motions in practical applications. The statistical prediction is compared with available field measurements both qualitatively and quantitatively. The characteristic features and dependence on physical parameters of the statistical prediction of mine motions are investigated. The present study is of importance to the prediction of mine burial in seabed and the design of mines.

This content is only available via PDF.
You do not currently have access to this content.